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Abstract

One of the major problems that a tree-approach to data analysis often

encounters is instability of tree-structures. Thus if one wishes to interprete the

data structure by the tree-approach, the instability issue must be dealt with.

Examining instability at a node of a tree provides insight into the instability

of the whole tree, since the same theory of instability applies to all the nodes.

Thus, this paper deals with the instability issue at a single node of a tree.

We assume that data are from a regression model, and examine what fac-

tors in that model affect the instability. Squared-error loss is considered as a

criterion for tree-construction ( "is" criterion in CART program). The selec-

tion rate of a regressor variable at a node of a tree is used as a measure of

instability. The selection rate mainly depends on (i) regression coefficients, (ii)

(conditional) variance-covariance structure of the regressor variables (given a

subset of the regressor variables), (iii) the sample size, and (iv) noise in the re-

sponse variable. We report simulation results that show patterns of instability

for several different settings of regression models.
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1. INTRODUCTION AND MOTIVATION

In a typical sequential prediction procedure, we observe explanatory or predictor

variables, one after another, deciding after each observation whether or not to continue

adding variables. In selecting the next predictor variable, we usually attempt to maximize

the expected utility, which involves the total cost of variable observations and the loss from

the decision. This sequential procedure can be depicted by a directed acyclic graph, called

a tree. We, however, refer to a tree - structured statistical prediction system as a tree.

Variables are observed at the nodes of a tree.

Many of the presently available statistical techniques were designed for small data

sets having standard structure with all variables of the same type; the underlying assumption

was that the phenomenon is homogeneous. That is, that the same relationship between

variables held over all of the measurement space. What makes a data set interesting is not

only its size but also its complexity, where complexity can include such considerations as

high dimensionality, a mixture of data types, nonstandard data structure and

nonhomogeneity; that is, different relationships hold between variables in different parts of

the measurement space. Tree-structured approaches have been suggested for data sets with

such forms of complexity.

Use of trees in regression dates back to the AID (Automatic Interaction Detection)

program developed by Morgan and Sonquist (1964). Then followed the ancestor

classification program 'MAID, developed by Morgan and Messenger (1973). Breiman,

Friedman, Olshen, and Stone (1984) proposed an algorithm called Classification and

Regression Trees which is designed to provide a statistical sequential decision aid to its

users for classification or regression problems. If we are given appropriate data, then we can

get a guide, in a form of an upside-down tree, to what order to observe the predictor

variables, when to stop observation, and what decision to make: The computer program that

is based on this algorithm is referred to as CART. Huang (1989) developed a tree-structured

method of detecting nonlinearity of a regression model. CART is now one of the most

popular tree-structured data analysis and pattern recognition programs, and is used by many

statisticians and AI people.
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By the nature of the tree-structured approach, the approach is available for a data

set which involves any large number of variables, where the variables can be of any type.

It is also useful when the true regression model is non-linear, since it provides us a rough

picture of the true model.

One of the advantages of the tree-structured approach is that the tree procedure

output gives easily understood and interpreted information regarding the predictive structure

of the data. The tree procedure output, almost universally, provides an illuminating and

natural way of understanding the structure of the problem (Breiman et al. (1984), p. 58).

However, extensive exploration and careful interpretation are necessary to arrive at sound

conclusions (Einhom (1972), Doyle (1973), Breiman et al. (1984)).

We will use the words "tree-shape" and "tree-structure" for different meanings. We

define a tree-shape in terms of nodes and the directed arcs connecting the nodes. We

define, for a given tree-shape, a tree-structure by assigning the selected predictor variable

to each node and describing how to split the variable at the node. Figure 1.1 is an example

of a tree-structure, where observations are made at the circles; decisions or predictions are

made at the boxes. We use Figure 1.1 as follows. Suppose that the predictor variables are

all binary, taking on the values 0 or 1. First, we observe the predictor variable X1. If X1= 1,

we stop observing and make prediction; otherwise, we observe X2. The subsequent actions

follow accordingly. If we delete all the letters and numbers from Figure 1.1, the remaining

one is a tree-shape. We, however, use the terms "tree" and "tree-structure" in the same

sense.

(Figure 1.1 about here)

Suppose we have a data set from a statistical model, and a tree is obtained based on

the data set. With the sample size fixed, we repeat generating a data set from the same

model and then obtaining a tree based on the data set. If the tree-structures are all the same

over the repeated process, the tree-structures are said to be perfectly stable; otherwise,

unstable with a level of instability, as will be discussed later in the paper.

We consider, for example, the tree in Figure 1.1. We label the node of Xi by the

index i. Suppose there are several comparably informative variables at node 2. The variables

appearing at node 3 will change according to the variables at node 2. A different variable
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at node 2 may change the variables at the subsequent nodes. This phenomenon seems to

erode the interpretability of the data structure by the tree approach. Is it really the case?

Breiman et al. discussed interpretability of the data structure via the tree output in

their section 5.5. Instability of tree structures is a key issue there, and it certainly deserves

a lot more investigation, since instability is a crucial obstacle to more sound interpretability.

What are the factors that cause instability in trees? How do the factors affect instability?

These issues will be investigated, in this paper, at a node of a tree under the assumption

that the data are from a linear regression model. By seeing what factors involved in a

regression model cause instability and how they do, we could have a better insight into the

true statistical property behind data in the mist of instability. Understanding the instability

issue at a node will give us an it sight into the issue for a whole tree, since the same theory

applies to all the nodes of a tree.

We consider a regression model

y= p0 +p1X1 pr E, (1.1)

where e has m 09 u) distribution, and is independent of (X1, -, Xr). We suppose we have

a data set of size n from the model (1.1) such that the th observation is

(xp, x1r, yi)

For a vector or matrix A, Al means the transpose of A. We let

Yit)9

Xi (Xi, X2, , Xn) ,

Pi = Pie-9 Pr),

and el = (CP E2, ".9 609

where X; = (1, X Xj2, X jr), for j = 1, 2, n .

(1.2)



Then, for a given data set (X., y ) , the Is estimate of p is given by

A = (X,)-1x/y,

4

-(1.3)

under the assumption that xix is of full rank. It is to be noted that X1, X2, -, Xr, and Y are

all assumed random variables.

The regression model as described above will be assumed throughout the paper. This

paper consists of 5 sections. In Section 2, we introduce measures useful in dealing with the

instability problem of the tree approach. The unbiased estimators of the measures

introduced in Section 2 are derived in Section 3. In Section 4, instability of trees is

illustrated using the unbiased estimators derived in Section 3. Finally, Section 5 presents

several comments on the results of this paper.

2. MEASURES FOR THE TREE-STRUCTURED REGRESSION ANALYSIS.

Assume that all the X variables are finitely discrete or categorical. Suppose there is

a data set generated from the model (1.1). Then, we have

V(Y) = p' IxP +a, (2.1)

where p' (p0, p,,..., p,,), and is the variance-covariance matrix (VCM) of the

column vector X, which is given by x' . (1, X1, X2,, Xr).

Definition 2.1 Let X1, -, X,, Y be random variables.

For an integer s, 1 < s < r, let {i1, j2, be a

{1, 2, r} and X' = (Xi, Xi2, Xiy Then, for j E {1, 2,

Kylr = x') - E(V(YIX' = xs, Xj)IX' =

= V(E(YIX" = xe, Xj)IX' = x').

i2,

subset of

, 0, we let

(2.2)
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We call jvAs,,
JIA.

X the improvement value (IV) by Xi given x x*. If confusion

is not likely, we will write /Vx for /Vx In the tree approach, we analyze the

relationship between Y and the set of the X-variables by selecting the X-variables one after

another. At the initial selection, select the X-variable for which

/Vx = V(E(YIX)) (2.3)

is maximized. Let the selected variable be X1. Then, for X1 = x1, say, repeat the same

process. That is, select the X-variable for which

/V x, = V(E(YI X, X1 = x1)1X1 = x1) (2.4)

is maximized. If such difference as in (2.4), say, is equal to zero, then we stop the selection

process.

A careful look at the IV would give us an insight into the relationship between the

tree-structure and the regression model. At this point, we need the theorem below.

For notational convenience, we will use X0 for the first element ( =1) of X.

Theorem 2.2

Suppose the following two conditions hold for the regression model (1.1):

(i) X = (X0, X1, X,)' is a random vector with a VCM Ex ,

the coefficients /30, py, -, 13, are known.

Then, under the set-up of Definition 2.1, we have

nixie Ixix P P

where Xxix, is the VCM of X conditional on that I. = x

Proof: Its proof is straightforward from the regression model (1.1).

1 1

(2.5)



v(Ylx* e) = v(x' p eix =

Similarly, we have

V(YIX* = x

By Definition 2.1, (2.5) follows.IJ

= pix* = 2+ at

= x ;iv x.=
1 1

P

6

If confusion is not likely, we will write Ixix. for Ixix Theorem 2.2 says that

the /V depends upon the regression coefficients and the (conditional) VCM of X (given a

subset of {X1, -, X7 }).

nix for the initial selection of Xi variable, is given by

1V = P' Ix P P1 E(Ixix) P (2.6)

The variation among the /V's deserves our attention since it has something to do with

instability of trees. The following corollary is immediate from Theorem 2.2, and thus proof-

omitted.

Corollary 2.3

Under the same set-up of Theorem 2.2, for j and Ri j), both in

{1, 2, r} / {i1, ir 0, we have

117xillx = Pi E(IxIx*, X) P E(111., x) (2.7)
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In particular, if r = 2 in the regression model (1.1), we have, from (2.7), that

x
1

nix: ' F(11(X1 1X2)) PiEMX21X1» (2.8)

From equation (2.8), we can at least say that, the larger pl or E(V(X1 1X2)), the higher would

the probability be that X1 is selected rather than X2.

In this section, we have found an expression for nix,. under the condition of

Theorem 2.2.

3. UNBIASED ESTIMATORS

In this section, I will derive an unbiased estimator of the nix,. introduced in Section

2.

Lemma 3.1 Let W1, W be random variables, and A an nxn matrix. If

W = Ivey, then

E(W' A W) = E(W') A E(W) + E ai. cov(Wi,

where is the (4 nth entry of A.

Proof: From the equation

AW =X W aip
-

the desired result is a straightforward consequence.0

Theorem 3.2

Let B be a (r + 1) x (r + 1) matrix. Then, given the data (X, y) from the

regression model (1.1),

13



E(Six B fixIX) =psp+0.2, tr(B(X/X)-1).

Proof: By substituting (1.3) in (3.1), we have

E(Ax B 41X) = E(Y X (X X)-1 B (XX)-1X1YjX)

= p x/x(xix)-1 c

where

= fi B + c,

c = cr2, tr(X(XIX)-1 B(X/X)-1 X')

= of tr(B(XX)-1),

8

(3.1)

by Lemma 3.1. Q.E.D.

Suppose we have a data set of size n from the model (1.1). Let In be the nxn

identity matrix, and Jn the nxn matrix of l's. Then we have

- JOX)= .
n

1

1

(3.2)

For the given data set, suppose that n.xj cases have Xi = xj, then the summation of n. xj
over

all the possible values of xj of Xj is equal to n. Let X(Ix) be the nmi x + 1) matrix

composed of the rows of X each of whose (j + 1)th entries is xj.

In analogy to (3.2), we have

1 T
.

i
ax

0n

1

. - , x;) vni -
in."xi "

It xi)) =
xj xj -

1 4



We define

and

1 1Xl(I,,
n

J,,)X ,n1

1 -
n. 1

(I
ny,

1

Jej

)X
Xi

,
J, Xi

Then, we can see that, if Xi and the other X-variable are not independent,

1
n. , say,J xi xlxi Xj

is an unbiased estimator of Eaxix ; otherwise
I`114)

is given by (3.8) below.

In (3.5), the summation is done over the support set of Xi.

We let i (i1, i2, ..., is),

diagonal matrix where

9

(33)

(3.4)

(3.5)

for 1 5 s 5. r and let D
(-j)

be the (r + 1) x (r + 1)

the (j, jr entry = 01
if j E is}

otherwise .

We let a = {1, 2, -, i2, is). If X' and Xi are independent for j e a, then

(i) (j)
Ixix = D for each possible value x of X*

Recall that the matrix X in expression (1.2) is a random matrix. For a given set of

data (X, y), suppose we fit the linear regression model (1.1), and the is estimator of p is

denoted by Ax

15
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Under the normality assumption of E and the independence assumption of X1, -, X,

the mean squared error (MSE) from the least-square fit of the model (L1) is the unique

minimum variance unbiased estimator of 0.2( (Atiqullah (1962)). We will denote the MSE

by a! We can also find the uniformly minimum varianced uthiased (UMVU) estimator

of 02, , when X1, -, X, are correlated (Theorem 4.1 of Lehmann (1983)). We also denote the

estimator by ef2e

The IV value in Definition 2.1 depends on the joint distribution of X1, X2, -, X,. and

Y. If we base the IV value on the X-matrix of a given data (X, y), and denote such IV by

./Tix, then we may write

ivx = p' p - p' 1x.1. xix.
(3.6)

Theorem 3.3

Suppose the regression model (1.1) is true. Then, given the data (X, y), the statistic

given below is an unbiased estimator of nix , for j e a:

nX
i x. (4xix x aX 62 tri(IxIx x)(XIX-1). (3.7)

Proof: Under the normality assumption of c , we can always find the UMVU estimator

621 of a2. The rest of the theorem follows immediately from Theorem 3.2. 0

We suppose that
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[IND-1] for j a, x, xp and the vector of the rest of the X-variables are mutually

independent.

Then,

(I) (i) (1,D (i,D.=D- D- and =D- D- .xix xix., xj

Thus in the mutual independence situation, we have, from (2.5),

(1) (i, D (i,
/T1 . = p' D D p pi D 1,x D p .xix

_ -

ivx thus be written as follows:

(i) (i) (i.D (1,D
IVx = p'D- D- x 1)- p.xilx. .x

Consequently, we have the following result.

(3.8)

(3.9)

Theorem 3.4

Suppose the regression model (1.1) is true. Then, under the independence condition

[IND-1] and given the data (Y, y) from the model (1.1), the statistic given below is an

unbiased estimator of nix in

.fr
= YxX Ix'

where

K = 17,

expression (3.9):

D(9 2x D(9

. 2
S.1 (X/X)1 +

()lea

D (i,J
2xD - K,

Ski (XIX)k7),
ktai

(3.10)

(3.11)

Ski is the sample covariance of Xk and X,,



Ala is the (k, /)th element of matrix A, and cei =

Proof: The proof is sufficient if we show equation (3.11).

(1) (1)
tr(D D (XIX)')

1 r{ (i) 1 )
t D J )X D

(
(X1X)-1 by (3.2)

n1 n n n

= 1 tr(D(9XIX D(9 (X1X)-1) - 1 (i)
tr(D(9 1 nX.D (X1X)-1) .

n-1 n(n -1)

For the first term in (3.12);

tr(D(9X/X D(1)(XIX)-1) = tr((D(9XIX D(9) (D(9(XIX)-1 D(9))
= I I (XIX)ki (X X) .

For the second term in (3.12);

_ti) (
trID X/1XD

1)
(XIX)-1

After a simple algebra, we have

kw Ica

tr((D(s")X1./wYD( -0 )(D(f-) (X/X)-1D(1)))

= I I (XiJnX)ki (X /ilk
icia lea

XijnX = n2M,

where M is the (r + 1) x (r + 1) matrix, with its (i + 1, j + 1)th entry being

[i 4i Xk) .

12

(3.12)

(3.13)

(3.14)

(3.15)



From (3.14) and (3.15),

tr(D4(9XVCD(I")(X0-1)

By (3.12), (3.13), and

(n-1) tr

By the same argument,

(n-1) tII

we have

=

(3.16), we have

D
ti

D
(i)

(11X)")=
kca

= (n

we have

(D14) (iIx Dji) (X/X) -1

n21 I Mid(X/X);k1 .
kca Ica

I I ((1Xk, - ki)(XIX)Tk
Ica

-1) X Ski (X/Aliki .
kca Ica

= (n-1) 1 I Ski (X/X)
kcal Ica.

13

(3.16)

(3.17)

(3.18)

From (3.17) and (3.18) follows

tr[(1) (i) (i,r) (i,r)
D 2.",x D (XIX)-1)- tr[D 2;x D (X/X)-1)

= 15j1 (X + I S (X X)J7k1 .
Ica kca

Therefore, by Theorem 3.3 and expression (3.8), we get the desired result. 0

It is noteworthy that the unbiased estimator of Bix in Theorem 3.3 depends on

the is estimator of p based on the whole data (X, y) rather than based on any subset of

the data (X, y) corresponding to the outcome X = x'. Meanwhile, the estimator depends

on the conditional covariance structure of the X-variables.
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Under the independence assumption of XI, X2, X" the bias term K is non-negative

for large n. Thus ignoring the bias term results in overestimation. Actually, we may take 4,

= 0, k * 1, for large n. Then, from (3.11),

K 62, (x/x)ii 0

since the independence assumption implies that (xixyl is positive definite, and so the

diagonal elements are all positive.

4 ILLUSTRATIONS

In this section, we will see some simple examples of instability for several causal

factors of it which are discussed in Section 3. Tree-structures may be unstable partially due

to chance fluctuations in the data or due to associations between the variables (see

Subsections 5.5.2 and 8.10.1 of Breiman, et al. (1984)). The last paragraph of Subsection

8.10.1 may have to be read with discretion. For the regression model used in their Section

8.6, the regression coefficients are all different by some amount, while the variances of the

X-variables are all within a small range. In this situation, the tree-structure may be very

stable, as will be shown in Example 4.1.

Example 4.1

Consider a regression model (1.1) with r = 2, and suppose that the X-variables are

independent. If there are no X-variables already known, i.e., {i1, i2, -, = 0, then, from

(3.10), we have

IV= 0X (X - DU) D(1))4X i- el2 S.. (XIX):1Xj B (4.1)

Since there are only two X-variables, we may look at

"x
DIV1,2 = - IVx2

to see which X-variable is actually selected based on a given data set. From (4.1) follows

DIV1,2 = 02 S11
- fi22 S22 + 82, (.5 22(X X)33-1 - SllgiA1221)*

0

(4.2)
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For simulation, we consider a version of the regression model (1.1) (call it M-1)

under the following conditions:

(a) po= pi= P2 = 1,

(b) a2, = 1,

(c) ppfi = 1) = 0.2, P(X1 = 2) = 0.8, P(X2 = 1) = P(X2 = 2) = 0.5 .

If the DIV-value is positive, then we select Xi variable; if negative, X2 being selected.

If the DIV is equal to zero, then both variables are equally likely. This selection rule is the

same as the CART's with the "least-square" selection criterion of CART. Table 4.1 is

obtained based on 10 data sets of size 100 each from the model M-1. Each row corresponds

to each data set.

(Table 4.1 about here)

As indicated in Table 4.1, there is some uncertainty in variable-selection. To get some idea

of uncertainty, we generated 500 data sets of size 30 each. Figure 4.1 is the histogram of

the 500 D/V-values.

(Figure 4.1 about here)

Table 4.2 shows the selection rates of X1 variable out of 1,000 iterations for each

specified regression model. For the table, we allowed 1, 2, and 3 for Pi; (0.2, 0.3), (0.2, 0.5),

(0.3, 0.4), and (0.3, 0.5) for (P(X1 = 1), P(X2 = 1)); 5, 10, 30, and 50 for the sample size.

The values in the row of E(DIV) (call it the "true DIV") are obtained from nix - jyX2.

(Table 4.2 about here)

(Figure 4.2 about here)

Table 4.2 is graphed in Figure 4.2, where the numbers on the right margin or on the

lines are the true DIV values. From the graph we can see that the selection rate depends

on the true DIV and the sample size. When the true DIV is larger than or equal to 0.39,

the selection rate is not less than 0.75 even at the sample size 10. On the other hand, for

the true DIV's between -0.09 and -0.03, the selection rate is not less than 0.3 even for the

sample size 50.

(Table 4.3 about here)
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Table 4.3 shows the relationship between the selection rate of X1 and the sample

size for the regression model M-1. According to the table, we need a sample of size larger

than 300 to reach the selection rate of X1 0.1, and 600 to reach the selection rate 0.05. This

is an extreme situation compared with the case where p1 = 2 or 3 in Table 42.0

We may safely conclude from Example 4.1 that the absolute distance between the

selection rate and 0.5 increases

(i) as the absolute value of the true DIV increases for each sample size, or

(ii) as the sample size increases for each true DIV.

We define the level of instability or the instability level (at a node) to be equal to 0.5 minus

the above-mentioned absolute distance. Thus the instability level is between 0 and 0.5

inclusive. 0 means "the lowest instability (i.e., perfect stability)", and 0.5 "the highest

instability".

As implied by expression (3.7), the level of instability depends on the sample size,

the association level among the X-variables, ace, and p . If we laiew
A, x

for any subset
I

Xis} of {X1, -, X,} and j c a = {1, 2, -, i2, is}, then from the tree T.

which is obtained based on iv_
All

could we see which X-variable partitions the population

so that the partitioned subgroups are most homogeneous with respect to Y, i.e., the within-

group variances of Y are minimized; and so on, for all the subsequent nodes. That is,

conditional on that a set ofX-variables are already observed at the previous nodes, we select

the X-variable which divides the current subset of the population into mostly homogeneous

subgroups. If we say that 7,, is an unknown parameter, then we may say that the tree;

which is obtained based on the data (X, y) is an estimate of the parameter. As indicated

in Example 4.1, we can expect that the tree rx will approach as the sample size

increases.
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However, T.,, may not be an interesting object, because Y. does not necessarily show

the whole picture of the corresponding statistical model. This is analogous to that the

scatterplots of all the pairs of Y and X variables do not reveal the joint structure of the data.

In some sense, instability of trees can be a signal to data analysts that further investigation

is desirable on data.

The example below is continued from Example 4.1, and illustrates how the noise in

the regression model affects instability of trees.

Example 4.2

Consider a regression model (1.1) with r = 2, which satisfies condition (c) for model

(M-1) of Example 4.1, and po = p2 = 1. In this example, we allow 1, 2, and 3 for p1, and

2, 3, and 4 for o and see how the selection rate of X1 changes. The selection rates for a

= 1 are in Table 4.2. Table 4.4 is obtained by the same method as for Table 4.2 (the

number of repeat = 1,000). From (3.6), we can see that the true DIV has nothing to do

with the noise (01). Expression (4.2) says that the noise affects the tree-instability through

the bias term.

Table 4.4 says that instability of trees becomes serious as the noise (;) to the

response variable increases. From Table 4.4 and the fourth column of Table 4.2, we can see

that the selection rate of X1 gets closer to 0.5 as the noise increases for each sample size.

Expression (3.7) explains this phenomenon. But, since (xix)-1 converges in the order of

0 (1), the instability due to the noise (ac) can be overcome by increasing the sample size

only.

(Table 4.4 about here)

Next, we will consider a case where X-variables are associated.

Example 4.3

0

23
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Consider two versions of the regression model (1.1) with r =2, where the X's are

binary (0 or 1), and the two models differ in the joint probability of the X's. Their joint

probabilities are given by Table 4.5 (a) and (b), respectively. We call the model

corresponding to Table 4.5 (a) by model (M-2a); Table 4.5 (b) by model (M-2b).

(Table 4.5 about here)

We put

(a) po = p2 = 1, and

(b) = 1.

The marginals of X1 and X2 for both models are as in (c) of model (M-1) of Example 4.1.

We aiiow 1, 2, and 3 for pi in the simulation.

Table 4.6 shows the selection rates of X1 variable out of 1,000 iterations for each

specified regression model (changing values for pa). The association between X1 and X2 (the

correlation coefficients of the X variables are 0.4 for model (M-2a) and 0.25 for model (M-

2b)) shrinked the true DIV values towards 0 a little bit, leading to a higher level of

instability (compare Table 4.6 with the fourth column of Table 4.2). The fact that X1 and

X2 in model (M-2a) are correlated more strongly than those in model (M-2b) is reflected

in the true DIV's, and in turn in the selection rates. Table 4.6 suggests that, provided that

the marginals of X1 and X2 are fixed, the higher level of instability is for the larger absolute

value of the correlation coefficient.

(Table 4.6 about here)

0
Finally, a simple example follows where we will see how the variation in X can

contribute to instability of trees.

Example 4.4

Consider a simple regression model with r = 1, and the X variable is binary (0 or

1) with P(X1 = 1) = p. Let the data size be equal to n. Then,

si
= s s



where s is the number of the case with JC, = 1 in the data set.

Now,

yielding

By Jensen's inequality,

(X/X)-1 =1
-ss n

02 1Kti 1) = E
n [1(1

n fz)1.

V(A1) !I-!
n n

(E(-11 =
n

(p(1 - p) (1
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(4.3)

(4.4)

From (4.3), we can say that V(A1) increases as p approaches 0 or 1 for a given cr: The

inequality in (4.4) provides us with the greatest lower bound of 101) for the given

distribution of the X1 variable. 0

In this section, our purpose was to see some patterns of instability, and we

considered some simple regression models. The regression models with larger r would

complicate our problem with only a little more gain, since the variable selection is

essentially by pairwise comparisons of the IV's.

It is to be noted at this point that the instability discussed in this paper is confined

to a node of a tree, not over a whole tree. However, to understand the instability of trees

do we need to understand the instability at each node.

In this section, we have seen, for a regression model with r =2,

(1) that the instability level increases as the absolute value of the true DIV decreases,

(2) that the instability due to the noise to the regression model can be cured by

increasing the sample size only,
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(3) that when the absolute value of the true DIV is small (less than 0.1), increasing the

sample size will be of little help; on the other hand, wlz,-.71 the absolute value is not

less than 0.4, the instability level looks good (the selection rate of Xi is over 0.8) for

the sample size around 30, and

(4) that if we compare the instability levels from any two regression models, both of

which are the same except that the X's are independent in one model, and not for

the other, then the instability level may be lower for the independent case than for

the other case.

Relationship between the DIV or IV and the instability level at each node seems

to deserve further study.

5. DISCUSSION.

At the outset, the consideration of the tree approach for a data set obtained from

a linear regression model may sound like nonsense. However, if all the regressor variables

involved are finitely discrete, then fitting a regression model is equivalent to partitioning the

sample space generated by the regressor variables involved in the model fitting. If the same

set of regressor variables that are involved in the model fit is used in the tree approach,

then the derived tree, in general, gives rise to a partition of the sample space coarser than

the one corresponding to the regression approach. This is an advantage of the tree

approach over the classical regression approach as far as the prediction accuracies are of

an equivalent level.

Many criteria are developed for choosing the best regression models (Seber(1977),

Miller (1990)). Among them are the coefficient of -determination (R-square), Mallows' Cr

and MSEP. Any of these seems hardly applicable to selection of the final tree. If we have

a careful look at the expressions (2.5), (3.6), and (3.7), we can see that the tree is

determined by the is estimate of p, and the relation among the X-variables. In regression,

26
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the estimate of p changes for different sets of regressors; while, in the tree-approach, we

use the same estimate of p all through the tree-construction process.

Instability of the tree structure is certainly a drawback in the tree approach, but it

also is a signal for further investigation for a sound interpretation of the stochastic

properties behind data. Based on the theoretical results and the examples of this paper, I

can safely say the followings:

(1) If instability is seen near the bottom of a tree, it may be due to the pure noise in

data. Increasing the sample size may help.

(2) If instability is elsewhere, it may be due to association among the regressor or

predictor variables. In this case comparing different tree-structures may help for a

better insight into the nature behind data.

Instability at a node near the top would affect the whole tree-structure and tree-shape.

If the IV's of a set of regressors are more or less at the same level, the instability level may

decrease at a very slow rate (see, for example, Table 4.3). Thus even for large sized data,

it is not very surprising to see instability. In such a situation, those trees that show up at

comparable frequencies (suppose we repeat random subsampling from a data set generated

from a statistical model and constructing trees based on the subsampled data lots of times)

may deserve equal attention for a sound interpretation of the stochastic properties behind

data, since those competing regressor variables may equally be informative for the predicted

or dependent variable. In this context, a computer program that can construct a tree where

a particular regressor variable is split at a user specified node of the tree is desirable. With

27
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this program, we can construct several trees from a data set, and use them for better

interpretation of the stochastic properties behind the data.
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Figure 1.1
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TABLE 41

/NV
Variable-selection

by CART

0.016 Xi

-0.3 X2

-0.011 X2

-0.003 X2

-0.345 X2

-0.224 X2

0.056 Xi

0.033 Xi

-0.047 X2

-0.218 X2

31
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Table 4.2

pl

(P(X1 = 1), P(X2 = 1))

Sample Size (0.2, 0.3) (0.2, 0.5) I (0.3, 0.4) (0.3, 0.5)

1 5 0.52 0.50 0.50 0.50

10 0.49 0.43 0.46 0.48

30 0.41 0.37 0.45 0.43

50 0.38 0.32 0.42 0.44

E(DIV) -0.05 -0.09 -0.03 -0.04

2 5 0.74 0.71 0.74 0.74

10 0.78 0.75 0.80 0.81

30 0.88 0.85 0.93 0.94

50 0.93 0.91 0.97 0.97

E(DIV) 0.43 0.39 0.6 0.59

3 5 0.89 0.90 0.91 0.89

10 0.93 0.92 0.95 0.96

30 0.98 0.98 1.00 1.00

50 1.00 1.00 1.00 1.00

E(DIY) 1.19 1.15 1.66 1.65

34
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Figure 4.2
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Table 43

Sample Size Selection Rate of X

5 0.5

10 0.43

30 0.37

50 032

75 0.26

100 0.23

150 0.2

200 0.17

300 0.12

400 0.09

500 0.07

600 0.043

700 0.03

800 0.023

900 0.022

31
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Table 4.4

Sample
Size

vg

2 3 4

pi = 1 5 0.497 0.49 0.524

10 0.466 0.469 0.51

30 0.435 0.438 0.451

50 0.381 0.456 0.418

pi = 2 5 0.584 0.539 0.548

10 0.622 0.614 0.542

30 0.695 0.648 0.646

50 0.781 0.69 0.636

P1 = 3 5 0.716 0.623 0.584

10 0.764 0.681 0.665

30 0.887 0.823 0.763

50 0.952 0.867 0.798

37



Table 4.5

x2

0.48 0.32

0.02 0.18

(a)

Xl

36

0

1

x2

0 1

31

0.45 035

0.05 0.15

(b)



Table 4.6

32

Pi

Selection Rate

Sample Size
M-2a M-2b

5 0.48 031

10 0.475 0.47

1
30 0.4 0.35

50 0.36 0.34

E(DIV) -0.076 -0.084

5 0.66 0.7

10 0.695 0.697

2
30 0.79 0.805

50 0.87 0.89

E(DIV) 0.33 0.366

5 0.82 0.87

10 0.87 0.89

3
30 0.97 0.975

50 0.99 0.996

E(DIV) 1 1.12

39
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